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together several new ideas and compare them with more
classical techniques. There are several fundamental ingre-This paper presents a new fictitious domain formulation for the

solution of a strongly elliptic boundary value problem with Neu- dients coming together here:
mann boundary conditions for a bounded domain in a finite-dimen-

• The boundary value problem is formulated for an opensional Euclidean space with a smooth (possibly only Lipschitz)
domain with a rectifiable boundary of any shape.boundary. This extends the domain to a larger rectangular domain

with periodic boundary conditions for which fast solvers are avail- • The given domain is embedded in a larger and simpler
able. The extended solution converges on the original domain in

domain (usually rectilinear in shape).the appropriate function spaces as the penalty parameter ap-
proaches zero. Both wavelet-Galerkin and finite elements numerical • The elliptic boundary-value problem in the original
approximation schemes are developed using this methodology. The domain is reformulated in a weak form as an integral equa-
convergence rates of both schemes are comparable, and the use tion in the larger domain, and this involves introducing a
of finite elements requires a parameterization of the boundary, while

regularization parameter « (the so-called penality parame-the wavelet-Galerkin method admits an implicit description of the
ter). Solutions depending on « converge to solutions of theboundary in terms of a wavelet representation of the boundary

measure defined as the distributional gradient of the characteristic original equation as « converges to zero.
function of the interior. The accuracy of both methods is investigated • Both wavelet and finite-element Galerkin type meth-
and compared, both theoretically and for numerical test cases. The

ods are used for numerical approximations in the largerconclusion is that the methods are comparable, and that the wavelet
domain for fixed and small values of «.method allows the use of more general boundaries which are not

explicitly parametrized, which would be of greater advantage in • Due to the rectinlinear nature of the larger domain,
higher dimensions (the numerical tests are carried out in two fast periodic solvers can be implemented in the larger
dimensions). Q 1996 Academic Press, Inc.

domain.

Earlier work on fictitious domains is discussed in the
CONTENTS sections below. In Section 2 we discuss the variational

formulation of the Neumann problem which will set the
1. Introduction.

framework for the rest of the paper. In Section 3 we formu-2. The Neumann problem for elliptic operators: Variational formu-
late the fictitious domain extension of our boundary-valuelations. 2.1. Generalities. 2.2. Variational formulation of the

Neumann problem. problem to a larger simpler domain and prove a conver-
3. Fictitious domain formulations of the Neumann problem. 3.1. A gence theorem which asserts that as the penalty parameter

basic fictitious domain formulation. 3.2. A regularization and « tends to zero the regularized solution of the problem u«fictitious domain method.
converges to a solution of the boundary-value problem. In4. Wavelet and finite element–Galerkin solution of the Neumann
Section 4, we consider the finite element approximationproblem. 4.1. Numerical approximations. 4.2. Error estimates.

4.3. Finite element discretization. 4.4. Wavelet discretization. of the regularized Neumann problem and the error esti-
5. Numerical experiments. 5.1. Finite element method. 5.2 Wave- mate of the finite element solution.

let–Galerkin method. 5.3. Comparison of finite element and
wavelet accuracy. 2. THE NEUMANN PROBLEM FOR ELLIPTIC

6. Conclusion.
OPERATORS: VARIATIONAL FORMULATIONS

1. INTRODUCTION 2.1. Generalities

Let g be a bounded open connected set (i.e., a domain)The Neumann problem in two dimensions is a classical
test case for any elliptic solver. In this paper we bring of Rd (d $ 1), and let us denote by c the boundary ­g of
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g. We assume that the domain g is a Ck,a domain, k [ Z, tained in g. In fact, the various methods to be described
in the following parts of this article will apply to these situa-k $ 0, 0 # a # 1. This means that ­g is defined by a

function F [ Ck,a(Rd); i.e., F has continuous derivatives of tions.
order k and the partial derivatives of F of order k are

The main goal of this article is to discuss a solutionHölder continuous of order a. Special cases of this that we
methodology for problem (2.1), (2.2) based on the so-will use in this paper are that g is a C0,1 domain (Lipschitz
called fictitious (or embedding) domain concept; fictitiousdomain), in which any g [ H1(g) extends to a function
domain formulations (to be described in Section 3) heavilyg̃ [ H1(V), and g is a C1,1 domain, in which case any g [
rely on the variational formulations for the Neumann prob-H2(g) extends to a function g̃ [ H2(V). Both of these
lem (2.1), (2.2) to be discussed in the next section.types of extensions will play an important role in this paper.

Various applications from physics, mechanics, and engi- 2.2. Variational Formulation of the Neumann Problem
neering lead one to consider the solution of the follow-

Following, e.g., [7], we derive a variational formulationing problem:
of problem (2.1) by multiplying both sides of Eq. (2.1) by
v [ H1(g) and then applying the divergence theorem. We2= ? A=u 1 a0u 5 f in g, (2.1)
obtain then (with dx 5 dx1 ? ? ? dxd)

A=u ? n 5 g on ­g. (2.2)

E
g

(2= ? A=uv 1 a0uv) dxIn (2.1), (2.2) we use the standard notation

5 E
g

(A=u ? =u 1 a0uv) dx 2 E
­g

A=u ? nv dc
= 5 H ­

­xi
Jd

i51
,

5 E
g

fv dx,

where x 5 hxijd
i51 is the generic point in Rd. Moreover,

we set where dc is the induced Lebesgue measure on ­g. Combin-
ing this with (2.2) implies that u satisfies (at least formally)

= ? V 5 Od
i51

­Vi

­xi
, a ? b 5 Od

i51
aibi , E

g
(A=u ? =v 1 a0uv) dx 5 E

g
fv dx (2.6)

1 kg, vl ;v [ H1(g),where V 5 hVijd
i51 is a vector-valued function, a 5

haijd
i51 , b 5 hbijd

i51 are vectors in Rd (distinguishing between
vectors and points in Rd in this context for clarity), and where k?, ?l denotes the duality pairing between H21/2(­g)
where n is the unit vector of the outward normal to ­g at and H1/2(­g). Relation (2.6) is at the basis of a classical
a generic point. In addition we assume positivity properties variational formulation of the Neumann problem, since it
of the coefficients to make it an elliptic problem. Namely, can be shown that if a function u [ H1(g) satisfies (2.6)
we assume that then it is also a solution of problem (2.1), (2.2), the deriva-

tives in (2.1) being taken in the distribution sense. The
variational formulation of (2.1), (2.2) derived from (2.6) be-a0 [ Ly(g), a0(x) $ 0, a.e. on g, a0 ? 0, (2.3)
comes

and, moreover, that A is a d 3 d matrix whose entries aij

belong to Ly(g) and which satisfies the ellipticity property Find u [ H1(g) such that ;v [ H1(g) we have

E
g

(A=u ? =v 1 a0uv) dx 5 E
g

fv dx 1 kg, vl.
(2.7)

A(x)j ? j $ auju2, a.e. on g, ;j [ Rd, (2.4)

where, in (2.4), a is a positive constant and uju2 5 j ? j. It is shown in, e.g., [7], that problem (2.7) has (as a conse-
Finally we assume that the input data f and g satisfy regular- quence of the Lax–Milgram lemma) a unique solution if
ity conditions of the form: (2.3)–(2.5) hold.

Formulation (2.7) is at the basis of powerful Galerkin-
f [ L2(g), g [ H21/2(­g). (2.5) type solution methods such as finite elements (see, e.g., [13,

7, 2, 1]). In this article, we shall combine it with fictitious
domain techniques in order to derive solution methodsRemark. We can take for f mathematical objects which

are much less regular than a L2(g)-function. For example, well suited to wavelet and finite element approximations
taking advantage of Cartesian meshes.f can be a measure supported by a (d 2 1)-manifold con-
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B [ Ly(Rd2
), B(x)j ? j (3.11)

$ buju2, a.e. on V ;j [ Rd,

with b a positive constant. Actually, if V 5 H1
0(V), we can

take b0 5 0; the properties of B imply that b(?, ?) is still
strongly elliptic over H1

0(V) 3 H1
0(V).

Remark. The functions b0 and B restricted to g may
coincide with a0 and A but this is not a necessity; similarly,
it is not necessary to have L related to f and g. Therefore
L 5 0 is a possible choice.

Next, we introduce the following subspaces of V:

H 5 hv [ V : E
g

(a0ve 1 A=v ? =e) dx
FIG. 1. Embedding of g in V.

5 E
g

fe dx 1 kg, el, ;e [ Vj (3.12)

H0 5 hv [ V : E
g

(a0ve 1 A=v ? =e) dx 5 0, ;e [ Vj.3. FICTITIOUS DOMAIN FORMULATIONS OF THE
NEUMANN PROBLEM (3.13)

3.1. A Basic Fictitious Domain Formulation Assuming that the hypotheses on a0 , A, f, g made in Section
2.2 hold, the Neumann problem (2.1), (2.2), or its varia-In order to solve the Neumann problem (2.1), (2.2) we
tional formulation (2.7), has a unique solution; this factembed g in a larger domain V (see Fig. 1 for an illustration
combined with the inclusion hypothesis (3.8) implies thatof such a situation), where we assume that g is a C0,1

H is nonempty; in addition, we clearly have that H is adomain, and g , V.
closed convex subset of V. Similar properties hold for H0In the following parts of this article, we shall assume
which is therefore a nonempty closed subspace of V. Wethat V is a d-dimensional ‘‘box,’’ that is, V is a product of
consider next the following problem:intervals (as illustrated in Fig. 1 for d 5 2). We consider

then a closed subspace V of H1(V) such that
ũ [ H,

b(ũ, v 2 ũ) $ L(v 2 ũ) ;v [ H.
(3.14)hv : v 5 ṽug , ṽ [ Vj 5 H1(g). (3.8)

Typical choices for V are H1(V), H1
0(V), and the space Problem (3.14) is a classical variational inequality like

VP(V) defined by those discussed in, e.g., [11, 7, 9]. It follows from the above
references that the properties of b(?, ?), L(?), and H imply

VP(V) 5 hv [ H1(V) : v is periodic on ­Vj. (3.9) that problem (3.14) has a unique solution. Also, since ũ 1
w [ H, ;w [ H0 , we obtain from (3.14) (taking v 5 ũ 1

Suppose that V 5 (0, T)d for some L . 0. Then the w) that
periodicity property in (3.9) means that v(0, x2 , ..., xd) 5
v(T, x2 , ..., xd) for almost every hx2 , ..., xdj [ (0, T)d21 with b(ũ, w) $ L(w) ;w [ H0 ,
similar relations for the other d 2 1 axis of coordinates
directions. Next, we introduce a bilinear form b : V 3 which implies in turn (since 2w also belongs to H0) that
V R R and a linear functional L: V R R, such that
b(?, ?) is continuous and V-elliptic over V 3 V, and L is b(ũ, w) 5 L(w) ;w [ H0 .
continuous over V.

We can, for example, define b by We have thus shown that the solution of (3.14) is necessar-
ily the solution of

b(v, w) 5 E
V

(b0vw 1 B=v ? =w) dx ;v, w [ V, (3.10)
ũ [ H,

b(ũ, v) 5 L(v) ;v [ H0 .
(3.15)

where b0 [ Ly(V), b0 $ 0, b ? 0 and where
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The reciprocal property is obviously true since b(ũ, v) 5 a(ũ, v) 5 l(v) ;v [ V. (3.22)
L(v), ;v [ H0 implies b(ũ, v 2 ũ) 5 L(v 2 ũ), ;v [ H,
which implies in turn Taking v 5 u« 2 ũ in (3.22) and combining with (3.21)

we obtain
b(ũ, v 2 ũ) $ L(v 2 ũ) ;v [ H.

b(u« 2 ũ, u« 2 ũ) 1
1
«

a(u« 2 ũ, u« 2 ũ) 5 L(u« 2 ũ)It is also obvious that

2 b(ũ, u« 2 ũ). (3.23)ũug 5 u, (3.16)

It follows from (3.23), from « . 0, and from the ellipticitywhere, in (3.16), u is the solution of problem (2.1), (2.2),
and continuity properties of a, b, L that(2.7).

3.2. A Regularization and Fictitious Domain Method b9iu« 2 ũi2
V # (iLi 1 ibi iũiV)iu« 2 ũiV ;« . 0, (3.24)

In this paragraph, we shall use the following notation:
where, in (3.24), b9 . 0 and where iLi and ibi are de-
fined by

a(v, w) 5 E
g

(A=v ? =w 1 a0vw) dx ;v, w [ V, (3.17)

iLi 5 sup
v

uL(v)u
iviV

, v [ V \h0j,l(v) 5 E
g

fv dx 1 kg, vl ;v [ V. (3.18)

andWe consider then the linear variational problem

ibi 5 sup
v,w

ub(v, w)u
iviViwiV

, v [ V \h0j, w [ V \h0j.u« [ V,

«b(u« , v) 1 a(u« , v) 5 «L(v) 1 l(v) ;v [ V,
(3.19)

Relation (3.24) implies
where, in (3.19), « is a positive parameter. For the following
convergence theorem we assume that A satisfies (2.4), B iu« 2 ũiV # C ;« . 0,
satisfies (3.11), that a and b are strongly elliptic bilinear
functionals on V given by (3.17) and (3.10), L is a continu-

which implies in turnous linear functional on V, and l is given by (3.18) (hence
also a continuous linear functional on V).

iu«iH1(V) # C ;« . 0. (3.25)
THEOREM 3.1. Let g be a C 0,1 domain, and let u, ũ, and

u« be solutions of problems (2.1), (2.2), (3.14), and (3.19), (2) Weak convergence of hu«j«.0 : It follows from (3.25)
respectively; then and from the closedness of V in H1(V) (which implies the

weak closedness) that there exist u* [ V and a subse-
quence—still denoted by hu«j«.0—such thatlim«R0 iu« 2 ũiH1(V) 5 0,

(3.20)
lim«R0 «21/2iu« 2 uiH1(g) 5 0. lim

«R0
u« 5 u* weakly in H1(V). (3.26)

Proof. In the following C will denote various constants.
Combining (3.26) with (3.19) we obtain at the limit in

(1) Boundedness of hu«j«.0 . Let ũ be the solution of (3.19) that
problem (3.14). Taking v 5 u« 2 ũ in (3.19) we obtain

a(u*, v) 5 l(v) ;v [ V;
«b(u« 2 ũ, u« 2 ũ) 1 a(u« 2 ũ, u« 2 ũ)

i.e.,5 «[L(u« 2 ũ) 2 b(ũ, u« 2 ũ)] (3.21)

1 l(u« 2 ũ) 2 a(ũ, u« 2 ũ). u* [ H. (3.27)

Replacing v by v 2 u« in (3.19) we obtain (taking intoSince ũug 5 u (see (3.16)) it follows from (2.7), (3.12),
(3.14), (3.17), and (3.18) that account the ellipticity of a(?, ?))
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b(u« , v) 5 L(v 2 u«) 1 b(u« , u«) Find u«
h in Vh such that

a(u«
h , vh) 1 «b(u«

h , vh) 5 «L(vh) 1 l(vh) ;vh [ Vh .
1

1
«

a(u« , u«) 1
1
«

[l(v 2 u«) 2 a(v, v 2 u«)]

(3.28) (4.30)
$ L(v 2 u«) 1 b(u« , u«)

Problem (4.30) has a unique solution in Vh .
1

1
«

[l(v 2 u«) 2 a(v, v 2 u«)] ;v [ V.
4.2. Error Estimates

In this section, we assume that g is a C1,1 domain andSuppose now that v [ H; we have then vug 5 u which
f [ L2(g), g [ H1/2(­g). Then the solution u of pro-implies that
blem (2.7) is in H2(g). In order to get error estimates for
iu 2 u«

hiH1(g) and iu 2 u«
hiL2(g) , where u«

h is the solution to
a(v, v 2 u«) 5 l(v 2 u«) ;v [ H, (4.30), we need to extend the solution u of problem (2.7)

from H2(g) into V. In [4], there is a basic extension result.
which combined with (3.28) implies in turn that We state it in the following theorem.

THEOREM 4.1. Let g be a bounded domain in Rd withb(u« , v) $ L(v 2 u«) 1 b(u«) u«, ;v [ H. (3.20)
a Ck,1 boundary for some integer k $ 0 and g ,, V, where
V is an open set. Then there is a bounded linear extension

Since b(?, ?) is positive definite over V 3 V we have, operator E from Hk11(g) into Hk11
0 (V) such that

form (3.26), Evug 5 v and

lim inf
«R0

b(u« , u«) $ b(u*, u*), iEviHk11(V) # C(k, g, V)iuiHk11(g) (4.31)

for all v [ Hk11(g).which combined with (3.29) implies
Thus for the polygonal fictitious domain V, g ,, V,

we can extend the solution u of the problem (2.7) fromb(u*, v) $ L(v 2 u*) 1 b(u*, u*) ;v [ H.
H2(g) to H2

0(V), and especially for the square domain V,
we can extend u from H 2(g) to H 2

P(V), the space of peri-We have thus proved (taking (3.27) into account) that
odic functions in H 2(V). Let the extension u be denotedu* is a solution of (3.14); since (3.14) has a unique solution
by Eu. We have the following result [5].we have u* 5 ũ, which implies that the whole family hu«j«.0

converges to ũ. LEMMA 4.2. Assume that g is a bounded domain in R d

with a C 1,1 boundary and g ,, V, where V is a polygonal(3) Strong convergence of hu«j«.0 . Consider relation
domain. Then there exists a constant C1 such that(3.23); we have just shown that u« converges weakly to ũ.

Combining this result with (3.23) and taking into account
iu«

h 2 uiH1(g) # C1 inf
vh[Vh

hiEu 2 u«
h i2

H1(V) 1 «i f̃ i2
L2(V)

(4.32)
the ellipticity properties of a(?, ?) and b(?, ?), we finally
obtain the convergence properties (3.20).

1 «iEui2
H1(V)j1/2,

4. WAVELET AND FINITE ELEMENT-GALERKIN
where u is the solution of problem (2.7) and u«

h is the solutionSOLUTION OF THE NEUMANN PROBLEM
of problem (4.30).

4.1. Numerical Approximations
4.3. Finite Element Discretization

In this section we want to formulate a Galerkin solution
of the regularized Neumann problem as posed in (2.7), In this section we specialize the results in (4.1) and (4.2)

to the case of finite elements. Let us first give a briefwhere A and B are identity matrices and a0 5 b0 5 a . 0.
Consider the space V , H1(V) defined by (3.8) con- description of the finite element spaces used to obtain the

error estimates in the following paragraphs. Let Th be asisting of all elements of H1(V) which are extensions of
elements of H1(g) to V. We now consider any finite-dimen- regular triangulation of the polygonal domain V. We would

like to use finite elements, d-simplices of type (k), forsional subspace Vh of V (which could be defined by finite-
elements, wavelets, or any other approximation scheme). integer k . 0 (other finite elements can be used). The

finite element spaces Vh associated with the finite elementsWe now consider the restriction of problem (2.7) to this
finite-dimensional subspace. We have d-simplices of type (k) are given by
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TABLE I

iu 2 u«
hiH1(g)/iuiH1(g) for u(x, y) 5 x3 2 y3 for the Finite

Element Method

« h 5 Ak h 5 aQh h 5 dQs

1021 1.27759362699 1.62154953409 2.16374221811
1022 0.32358749061 0.26197911257 0.29164753716
1023 0.19417803703 8.3662335694 3 1022 5.0478305305 3 1022

1024 0.18043329784 6.5094253508 3 1022 2.5674105973 3 1022

1025 0.17899468270 6.3208218876 3 1022 2.3200437070 3 1022

1026 0.17884885920 6.3018799334 3 1022 2.2953287236 3 1022

1027 0.17883425279 6.2999847513 3 1022 2.2928574657 3 1022

1028 0.17883279190 6.2997952230 3 1022 2.2926103423 3 1022

1029 0.17883264581 6.2997762701 3 1022 2.2925856300 3 1022

10210 0.17883263120 6.2997743748 3 1022 2.2925831587 3 1022

FIG. 2. Finite element grid with mesh size h 5 Ak.

strictly contained in the polygonal open set V. We obtain
the following H 1 error estimate [5].Vh :5 hvh : vh [ H 1

0(V) > C0(V), vh uT [ Pk , ;T [ Th j,
(4.33) THEOREM 4.4. Let g be a bounded C k11 domain in Rd,

where k is an integer satisfying .maxh0, d/2 2 1j and where
where Pk is the space of the polynomials in n variables of g , V, which is a bounded polygonal open set. If the
degree #k. solution u of problem (2.7) verifies u [ H k11(g), then there

Let hCi jN
i51 be the standard basis of the finite element exists a constant C3 independent of h such that

space Vh , where N is the dimension of Vh and hdi jN
i51 is the

set of the mesh nodes; it satisfies the relation
iu«

h 2 uiH1(g) # C3hhkiuiHk11(g) 1 Ï«i f̃ iL2(V)
(4.35)

1 Ï« iuiHk11(g)j,
ci(dj ) 5 dij 5 51, i 5 j,

0, i ? j,
where u«

h is the solution of problem (4.30) for Vh as in (4.33)
and « . 0.

for 1 # i, j # N. Also for any vh in Vh , we have
Therefore the optimal choice of « is « 5 Mh2s, where

M is constant and s $ k so that iu 2 u«
h iH1(g) is of order hk.

vh 5 ON
i51

vh(di )ci . For the L2 error estimate, we consider the following
auxiliary problem:

The Vh-interpolant is defined by

TABLE II
Phv 5 ON

i51
v(di )ci ,

iu 2 u«
hiL2(g)/iuiL2(g) for u(x, y) 5 x3 2 y3 for the Finite-

Element Method
for any v [ C 0(V). There are estimates of the interpolation

« h 5 Ak h 5 aQh h 5 dQserror in [2]. We will use the following.

1021 1.48056340340 1.32677581622 1.23291488149THEOREM 4.3. If k . d/2 2 1, then there exists a constant
1022 0.37017875130 0.21327731659 0.16603820621C2 independent of h such that, for any function v [
1023 0.21946578156 6.6884846802 3 1022 2.8487414845 3 1022

H k11(V) > H 1
0(V),

1024 0.20345479970 5.1556945153 3 1022 1.4246838113 3 1022

1025 0.20178058788 4.9997028789 3 1022 1.2813815642 3 1022

iv 2 PhviH1(V) # C2hkiviHk11(V). (4.34) 1026 0.20161092886 4.9840331005 3 1022 1.2670335191 3 1022

1027 0.20159393549 4.9824652763 3 1022 1.2655985068 3 1022

1028 0.20159223587 4.9823084852 3 1022 1.2654550035 3 1022
Let us assume that the solution u of problem (2.7) verifies

1029 0.20159206590 4.9822928061 3 1022 1.2654406531 3 1022

u [ H k11(g) for an integer k . maxh0, d/2 2 1j. Suppose 10210 0.20159204898 4.9822912381 3 1022 1.2654392181 3 1022

also that g is a bounded domain with a C k,1 boundary,
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FIG. 3. The left figure is the graph of u«
h and the right one is the graph of u«

hXg , where Xg is the characteristic function of g for « 5 1026.

Find f in H 1(g) such that

E
g

(afv 1 =f · =v) dx 5 E
g

(u 2 u«
h )v dx ;v [ H 1(g).

Find cr
h in Vh such that

a(cr
h, vh) 1 rb(cr

h, vh) 5 E
g

(u 2 u«
h)vh dx ;vh [ Vh .

(4.36) (4.39)

Since u 2 u «
h [ H 1(g), we have Problems (4.38) and (4.39) have a unique solution in

H1
0(V) and Vh , respectively.
The L2 error estimate is obtained from the followingif iH2(g) # C5 iu 2 u «

h iL2(g) . (4.37)
result [5].

Also we consider the auxiliary problem utilizing the ficti- THEOREM 4.5. Assume that the conditions in Theorem
tious domain penalty approach, 4.4 hold and d # 3. Then there exists a constant C4 indepen-

dent of h such that

iu 2 u«
h iL2(g) # C4h(h 1 Ïr)((hk 1 Ï«)iuiHk11(g)

Find fr in H 1
0(V) such that

a(fr, v) 1 rb(fr, v) 5 E
g

(u 2 u«
h)v dx ;v [ H 1

0(V).

(4.38) 1 Ï«i f̃ iL2(V)) 1 « S h
Ïr

1 1D (4.40)

and the finite element approximation of problem (4.38) HS hk

Ï«
1 1D iuiHk11(g) 1 2i f̃ iL2(V)JJ,

FIG. 5. The variations of x R u«
h(x, 0) (in solid line) and x R u(x,FIG. 4. The variations of x R u«

h(x, 0) (in solid line) and x R u(x,
0) (in dotted line), where u(x, y) 5 x2 1 y2 for « 5 1.0. 0) (dotted line), where u(x, y) 5 x2 1 y2 for « 5 1023.
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Vj (resp. uj ) corresponds to Vh (resp. uh ) described in
Section 4.1 with h 5 1/2 j. Under the assumptions of
Theorems 4.4 and 4.5, the analysis of [15, 8] gives

iu 2 u«
j iH1(g) 5 O(22min(N,k)j 1 Ï«)

and

iu 2 u«
j iL2(g) 5 O(222min(N,k)j 1 Ï«).

5. NUMERICAL EXPERIMENTS

5.1. Finite Element Method

FIG. 6. The variations of x R u«
h(x, 0) (solid line) and x R u(x, 0) We consider the following test problems. Let g 5

(dotted line), where u(x, y) 5 x2 1 y2 for « 5 1026. h(x, y) : x 2 1 y 2 , aQhj, let V 5 (21, 1) 3 (21, 1), and let
u(x, y) 5 x 2 1 y 2 (resp. u(x, y) 5 x 3 2 y 3 ) be the solution
of the Neumann problem

where u is the solution of problem (2.7), u«
h is the solution

of problem (4.30), and «, r . 0. u 2 Du 5 f in g,

­u
­n

5 g on c;Let « 5 M1 h2s and r 5 M2h2l, where M1 , M2 are constants
and s, l are integers. Then the optimal choices of « and r
are s $ k and s $ l . 0 so that iu 2 u«

h iL2(g) is of order hk11.
we then have f(x, y) 5 x 2 1 y 2 2 4 and g(x, y) 5 As (resp.

4.4. Wavelet Discretization f(x, y) 5 x 3 2 y 3 2 6(x 2 y) and g(x, y) 5 12(x 3 2 y 3 )).
In numerical experiments, we use 2-simplices of type (1)Let f be the Daubechies scaling function of order N

finite elements, so(N $ 3) [3]. Define fj,k :5 2 j/2f(2 jx 2 k) for k, j [ Z.
We assume V 5 (2s, s) 3 (2s, s), where s is a positive

Vh 5 hvh : vh [ H 1
0(V) > C0(V), vhuT [ P1 , ;T [ Th j,integer. Set

where Th is the regular uniform triangulations of V (e.g.,
Vj :5 Hv [ L2(V) : v(x, y) see Fig. 2) and P1 is the space of the polynomials in two

variables of degree 1.
The f̃ in (4.30) is given by f̃ 5 f in V. The line integral5 O

k,l[Z
ck,lfj,k(x)fj,l(y), x [ V, ck,l

along ­g in (4.30) is evaluated by Simpson’s composite
rule. The mesh sizes are Ak, aQh, and dsA . For the finite element
T [ Th with area (T > g) ? 0 and area(T > g) ? area(T),5 ck12j2s,l12j2sJ.

FIG. 7. The wavelet Galerkin solution for « 5 1.
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FIG. 8. The wavelet Galerkin solution for « 5 1023.

the area (T > g) has to be computed accurately enough Even near the boundary ­g, the approximate solution is
quite accurate.to obtain good results. The linear systems obtained from

problem (4.30) have been solved via a Cholesky factoriza-
5.2. Wavelet–Galerkin Methodtion. The CPU times for solving problem (4.30) with a

given « on a Sparcstation 2 are 1.8 s, 7.6 s, and 193.4 s for Let us approximate u « by u«
L [ VL, j [ Z1, as in Section

mesh sizes Ak, aQh, and aEs, respectively. 4.4. Also we sample the characteristic function xg , the
For the test problem with u(x, y) 5 x 3 2 y 3, we list the functions f and extended g in Vl (l and L can be distinct).

relative H 1 and L2 errors with « going from 1021 to 10210
Then, by precomputing the connection coefficients

in Tables I and II. The H 1 errors are of order h, the L2

errors being of order h2 if « is small enough. These are
Gm,n :5 E f(x)f9m(x)f9n(x) dx,what we expect from Theorems 4.4 and 4.5. For the other

test problem with u(x, y) 5 x 2 1 y 2, the errors are too
good to obtain the orders of errors similar to those of one can derive the desired linear system for the unknowns.
u(x, y) 5 x 3 2 y 3.

Remark. (1) It is convenient to choose the expansionFor the test problem with u(x, y) 5 x 2 1 y 2, the surface
spaces for u«

L and xg to be the same as those used to cal-graphs of the approximate solutions with h 5 aQh are shown
culatein Fig. 3 for « 5 1026. In Fig. 3, the left figure is the graph

of u «
h and the right one is the graph of u «

h Xg , where Xg is
the characteristic function of g. Also in Figs. 4, 5, and 6 E

g
(=u=v 1 uv) dx.

the variations of x R u «
h(x, 0) (solid line) and x R u(x, 0)

(dotted line) are shown for « 5 1, 1023, and 1026. If « 5
1.0, it is not surprising that the approximate solution is (2) To calculate the boundary integral on the right-hand

side, we use the uniform geometric measure approach in-really far away from the exact solution in g. As « becomes
smaller, the approximate solution is quite accurate on g. troduced in [14] to avoid numerical integration, since the

FIG. 9. The wavelet Galerkin solution for « 5 1026.
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TABLE VTABLE III

Comparative Times on a SparcStation Using Matlab Coding Relative Error in L2 Norm; iu«,L 2 uiL2(g)/iuiL2(g) for
u(x, y) 5 x2 1 y2 for the Wavelet Method

Time consumed Min
« L 5 0 L 5 1

L 5 0: 15
L 5 1: 168 1 0.64011168983714 0.60030587469127

1021 0.18728365752675 0.14122301303582
1022 0.06349181648207 0.02920589711123
1023 0.06433735001700 0.00359286263457
1024 0.00563482997730 0.00196723305079

latter requires the knowledge of the parametrization of 1025 0.00280148379091 4.461257406785745 3 1024

­g. Briefly speaking, one can write 1026 0.00201636549800 5.006539897281224 3 1024

10210 0.00192268309090 5.194671480165910 3 1024

E
­g

g ds 5 E
R2 g de,

where e is a Radon measure supported on ­g. In fact,
Du 1 u 5 f,

­u
­n

5 g on ­g.

e 5 =xg
·

=F
u=F u

(5.41)
Here we assume that we use the order 3 translated

Daubechies scaling functions as our basis. The test problem
if ­g is given by ­g 5 h(x, y) : F(x, y) 5 0j for some Lipschitz is chosen so that u 5 x 2 1 y 2 is the desired solution. We
function F. Therefore, if we sample g, xg , F in Vl as gl , solve for the numerical solution at level L 5 0, 1. Once
xg,l , Fl , and approximately e by el , which is calculated the linear system is set, we use LU decomposition to solve
accordingly by the formula (5.41), one can show that it. In Figs. 7, 8, and 9 we see graphs of solutions of the

solution to this test problem for variable values of the
regularizing parameter «. In Table III we see a comparisonE

R2 gl del R E
­g

g de
of the time consumed for different levels, and in the follow-
ing section we see a comparison with the finite elementas l R 1y; see [14] for the proof. Here we choose l @ L
computations given in the previous section. In this paperfor better accuracy.
we are more concerned with checking the accuracy of these

EXAMPLE 5.1. Let methods. In later papers we will go to methods which will
dramatically speed up these calculations yielding the same

g 5 hx 2 1 y 2 # 52j accuracy (such as multigrid and parallel computation; see
[6, 12]).

V 5 hux u, uy u # 15j
In Tables IV, V we present the relative errors E «,L

g with
L 5 h(i, j) : i, j 5 215 3 2 L, ..., 15 3 2 L 2 5j, respect to different choices of « and the levels L 5 0, 1,

and we want to solve

TABLE IV

Relative Error in H1 Norm; iu«,L 2 uiH1(g)/iuiH1(g)

for u(x, y) 5 x2 2 y2 for the Wavelet Method

« L 5 0 L 5 1

100 0.72312811620280 0.70420788736429
1021 0.24079518419690 0.20971773207275
1022 0.69763698457707 0.13364955388352
1023 0.71127229550499 0.02133194677591
1024 0.02153308376562 0.13696729249436
1025 0.02418248442799 0.00968907358125
1026 0.02697287795870 0.00923777387524
10210 0.02491507164637 0.00934298716397

FIG. 10. Solution u« , for « 5 1, restricted to y 5 0.
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TABLE VI

Comparison of Relative L2 Error Obtained by Wavelet
Method and Finite Element Method

« Wavelet Finite element

1021 0.19653 1.38506
1022 0.06411 0.34298
1023 0.32074 0.09031
1024 0.01717 0.14601
1025 0.05829 0.15172
1026 0.02049 0.15229
1027 0.01350 0.15235
1028 0.01349 0.15235
1029 0.01359 0.15236

FIG. 11. Solution u«, for « 5 1024, restricted to y 5 0. 10210 0.01359 0.15236

in H 1 and L2 norm. More specifically, if we denote the
wavelet solution by u «,L, then ­(u «,L 2 u L)

­x
,
­(u «,L 2 u L)

­u

E «,L
g :5

iu «,L 2 uiL2(g)

iuiL2(g)
,

and

or ­u L

­x
,
­u L

­y
.

E «,L
g :5

iu «,L 2 uiH1(g)

iuiH1(g)
. Then

These can be calculated numerically as follows. I ­

­x
(u «,L 2 u L)I

L2(g)

5 I­(u «,L 2 u L)
­x

x L
g I

L2(g)

,Assume we have the expansions of u «,L and u L at the
level L. Also we suppose that x L

g is the expansion of the
characteristic function xg of g at level L. Then etc.

In Figs. 10, 11, and 12, we see comparisons of these same
iu «,L 2 uiL2(g) 5 i(u «,L 2 u)x L

g iL2(g) . solutions for slices near the middle of the fictitious domain
V with respect to different «’s.

Similarly, using connection coefficients for the first-order
derivative, one can calculate the expansions of 5.3. Comparison of Finite Element and Wavelet Accuracy

In Table VI the comparison between the numerical re-
sults obtained by the wavelet method and those obtained
by the finite element method is presented with « varying
from 1021 to 10210. Both methods have been applied to the
same test problem,

u 2 Du 5 x 2 1 y 2 2 4 in g,

­u
­n

5 g on c,

whose exact solution is u(x, y) 5 x 2 1 y 2. For both meth-
ods, the geometry of the fictitious domain is the same; the
mesh is the uniform mesh and the number of mesh points
in the x-direction and the y-direction is 33. But the basis
for the wavelet method are order 3 scaling functions and

FIG. 12. Solution u«, for « 5 1026, restricted to y 5 0. the finite dimensional subspace for the finite element
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method is the one defined in 5.2 which consists of piecewise time. One consequence of the work in this paper is that
one sees that the fictitious domain method here works forcontinuous linear functions.
the boundary of an essentially arbitrary bounded domainThe better behavior of the relative L2-error obtained by
(with the assumption that the boundary is rectifiable), andwavelet approximation is expected. In [10] it is pointed
as remarked above, there is a difference in the codingout that the approximation of the first-order differential
of the boundary integrals for both methods (requiring aoperator associated with the genus-3 Daubechies wavelet
knowledge of the parametrization of the boundary curvebasis is the 9-point finite difference operator with trunca-
for the finite element method).tion error of order 4. By Theorem 4.5, the finite element

In future papers we will explore the extension of theseapproximation with piecewise continuous linear functions
ideas to the multigrid and parallal processing arena. Theis of second order.
ultimate goal is to find a general solution method whichAlso in the wavelet approximation, the part eg(vw 1
involves multilevel localized analysis, doing calculations at=v · =w) dx dy and the boundary integral are calculated
different scales (or several scales at the same time a lasystematically using the characteristic function xg and its
multigrid) at different regions of the domain considered,corresponding measure 2=xg · n. A parametrization of the
depending on the nature of how much computationalboundary curve was not required or used. Also in the
power one needs from one point to another.computation of the eg(vw 1 =v · =w) dx dy in the finite

element approximation, we need to do it accurately over
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